EPFL

CO₂ et Beton: la realité

Karen Scrivener, FREng EPFL Switzerland

 École polytechnique fédérale de Lausanne

Achieving Worldwide Sustainable Construction

Karen Scrivener

We need solutions for people in developing countries

EPFL

%overall CO2 from cement

Although the USA is the third largest consumer of cement, it accounts for < 1.5% of the country's emissions

EPFL Large contribution worldwide due to enormous volumes

EPFL Would it help to replace concrete by other materials?

Embodied carbon per $m^2\,$ by building structure type for all EU-ECB cases

 Röck M, Sørensen A, Tozan B, Steinmann J, Le Den X, Horup L H, Birgisdottir H, Towards EU embodied carbon benchmarks for buildings – Setting the baseline: A bottom-up approach, 2022, https://doi.org/10.5281/zenodo.5895051.

Substantial reductions in emissions > 80% can be achieved by working through the whole value chain

If only cement level is considered not more than about 50% possible without carbon capture and storage

EPFL Carbon Capture and Storage

At the very least it will be expensive Reducing now will be a very sound investment Scale of production >>> any "use" scenario Need to build network to transport to storage sites

- (

EPFL

Origins of CO_2 emissions in clinker production: CO_2 from the clinker remains around 90% through to the Concrete

The production process is highly optimised up to around 80% of thermodynamic limit.

It is estimated that < 2% further savings can be made here

Use of waste fuels, which can be > 80% reduces the demand for fossil fuels

1 tonne of clinker leads to the emission of 750 - 900 kg CO₂ Average 850kg/t

 CaCO3 decomposition (CHEMICAL)
 Fuel

9

Can we make cement with a different chemistry?

EPFL What is available on earth?

Hydraulic minerals in system CaO-SiO₂-Al₂O₃

BUT, what sources of minerals are there which contain AI_2O_3 >> SiO_2 ?

Bauxite – localised, under increasing demand for Aluminium production, EXPENSIVE

Even if all current bauxite production diverted would still only replace 10-15% of current demand.

Even after nearly 50 years CSA production in China is <0.1% of OPC and falling

EPFL

What does not make sense

- Many roadmaps indicate a significant amount of future CO₂ reduction will come from *"breakthroughs"*
- When we consider cement is a solid material that has to come from the earth, we can see that the idea of future radical breakthroughs borders on magical thinking or alchemy
- People cannot live in nano or virtual houses

First let's look at a few things, much touted, with no prospect to lower atmospheric CO₂

- > Use as soil conditioner?
- > Use as fuel?
- > Use in concrete?

EPFL The cement carbon cycle

The most common fallacy:

- So of course calcium oxide, hydroxide etc can (and do) react with atmospheric CO₂, but these would have to come from *uncarbonated* sources of CO₂ to have any net benefit
- Microorganisms (algae, bacteria, etc) *can* form calcium carbonate from atmospheric CO₂, but they need a source of calcium.
 Again only if this was originally uncarbonated does it have any net benefit

Any uncarbonated sources of calcium can already be simply exploited to produce conventional clinker.

Portland based cements will continue to dominate

Blended cements are the most realistic option to reduce CO₂ and extend resources

EPFL Most promising approach – reducing the clinker factor

Limestone

Fly ash

Slag

С

ays Burnt C

fines

Availability of SCMs

Mt/vr

There is no magic solution

- Blended with SCMs will be best solution for sustainable cements for foreseeable future
- Only material really potentially available in viable quantities is calcined clay.
- Synergetic reaction of calcined clay and limestone allows high levels of substitution: EPFL led LC³ project supported by SDC. Started 2013

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Agency for Development and Cooperation SDC

What is LC³

LC³ is a family of cements, the figure refers to the **clinker** content

- 50% less clinker
- 40% less CO₂
- Similar strength
- Better chloride resistance
- Resistant to alkali silica reaction

EPFL Comparison of calcined kaolinitic clay, slag and fly ash

Binary systems 70% clinker, 30% SCM Ternary systems, with limestone 50% clinker, 30% SCM, 15% limestone

Three basic clay structures

"Metakaolin", sold as high purity product for paper, ceramic, refractory industries Requirements for purity, colour, etc, mean expensive 3-4x price cement

Clays containing metakaolin available as wastes

- over or under burden NOT agricultural soil
- Much much less expensive often available close to cement plants

EPFL Over 70 clays studied from around the world

Different calcination conditions Different compositions, impurities Different physical properties

0%

Quartz

EPFL Benchmark test of clay strength

- > Compressive strength EN 196-1 at 1, 3, 7, 28, 90 d
- Linear increase of strength with the MK content of calcined clays
- Similar strength to PC for blends containing 40% of calcined kaolinite from 7d onwards
- > At 28 and 90 days, little additional benefit >60%
- Minor impacts of fineness, specific surface and secondary phases

Calcined kaolinite content overwhelming parameter

EPFL Distribution of Kaolinitic clays

Ito and Wagai, Scientific data 2017

0-5m

>5m

EPFL Is there clay in Switzerland?

Calcination of clay

Can be achieved with existing technology: Rotary kilns (even clinker kilns) Flash Calciners CO_2 emission as low as **90** kg /tonne Possible to electrify

Demonstration structure, India

Around 14 tonnes of CO₂ saved Compared to existing solutions

EPFL

New Calcination plant Ivory Coast

EPFL

Colour control at Ivory Coast plant

EPFL Calcined Clay only SCM which can expand substitution

EPFL Substantial reductions in emissions ~80% could be achieved by working through the whole value chain

A SUSTAINABLE FUTURE FOR THE EUROPEAN CEMENT AND CONCRETE INDUSTRY

Technology assessment for full decarbonisation of the industry by 2050

EPFL

Efficiency of binder use (29 countries)

3D printing!

DAMINELI, et al. Measuring the eco-efficiency of cement use. **Cement and Concrete Composites**, 32, p. 555-562, 2010

EPFL

Concluding remarks

- > Substantial reductions in CO2 possible
 - At cement level by increasing SCM substitution
 - At concrete level by minimising cement content
 - At structure level ?
- > All of the above will also lower cost
- > Remainder CO_2 can only be dealt with by carbon capture and storage high cost, infrastructure not in place.
- Calcined clays are the only realistic option for extending the use SCMs
- Can be done FAST and at SCALE

EPFL The GLO*BE***Consensus:** A paradigm shift

Unprecedented, more holistic approaches based on scientific background

http://globe.rilem.net

EPFL

 École polytechnique fédérale de Lausanne

Lower cost: Cementis study

Financial Attractiveness of LC³

Report available: <u>https://lc3.ch/wp-</u> <u>content/uploads/2020/10/2019-</u> <u>LC3FinancialAttractiveness-</u> <u>WEB.pdf</u>